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The complete stress tensor has been measured using a computer simulation of an 
assemblage of rough, inelastic spheres in an imposed simple shear flow. Only five 
components of the stress tensor were found to be significantly different from zero. 
These represent the disperssive normal stresses 7,,, 7yy and 7,, and the in-the-shear- 
plane shear stresses 7,y and 7yz; furthermore, the two off-diagonal stresses, rXy and 
rYz, were found to be equal so that the resultant stress tensor is symmetric. Two 
modes of microscopic momentum transport produce the final macroscopic stress 
tensor: the streaming or kinetic mode by which particles carry the momentum of 
their motion as they move through the bulk material, and the collisional mode by 
which momentum is transported by interparticle collisions. The contribution of each 
to the final result is examined separately. The friction coefficient, the ratio of shear 
to normal force, is shown to decrease at dense packings for both the collisional and 
streaming modes. Also observed were normal stress differences, both in and out of the 
shear plane, reflecting anisotropies in the granular temperature. 

1. Introduction 
Compared to most other branches of fluid mechanics, the flow of granular 

materials is still quite a mystery. In  part, problems arise because a granular material 
is, of course, solid and only adopts fluid behaviour under special circumstances. 
When an appropriate state of stress is applied to a static granular material, it will 
yield along stress characteristics, much like an ideal plastic material. If the 
deformation is slow enough, the motion will continue in this fashion ; i.e. the material 
will flow as large blocks, each consisting of many granules, moving relative to one 
another along thin slip lines. This is the ‘quasi-static regime’ of granular flow. 
However, if the deformation occurs rapidly enough, the impact between particles 
along the slip lines will be sufficient to dislodge the particles from their parent blocks 
of granules, continually enlarging the intervening slip region until the entire mass of 
material is moving as independent grains, each in relative motion with even their 
nearest neighbours. To the eye, individual particles will appear to move in a random 
manner about the average motion of the bulk material. This latter case is the ‘rapid 
flow’ or ‘grain inertia’ regime. Within this regime, any contact between particles is 
momentary, as the relative motion which drives the particles together will soon draw 
them apart. A complete description of the flow field must then include both the 
average velocity of the bulk material and some description of the individual random 
particle velocities. 

This concept of particles moving individually in a random manner within the 
context of a bulk material moving as a mass under the influence of applied forces, 
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strongly evokes the image of the thermal motion of molecules in the kinetic theory 
picture of gases. The analogy is so strong that the mean-squared average of the 
random velocities has been dubbed the ‘granular temperature ’ and there has 
recently been a great deal of success in adapting hard-sphere molecular models to 
rapid granular flows, by using the granular temperature as a replacement for the 
thermodynamic temperature. Indeed, the granular and thermodynamic tempera- 
tures share many of the same macroscopic effects : both generate pressures, both 
are related to the local density and pressure through an equation of state, both 
control the transport rates which result in the apparent viscosity and thermal 
conductivity of the material, and both conduct ‘thermal energy ’ along their 
gradients. (See Campbell & Brennen 1985b.) In  the parlance of granular materials, 
the pressures associated with the granular temperature are referred to as ‘dispersive 
stresses’ as they act to force the particle centres apart (i.e. disperse the particles). 
From a macroscopic point of view, the dispersive stresses keep the local solid 
concentration small enough to maintain the bulk material in a fluidized state. Unlike 
molecules, however, the interactions between particles are inelastic and thus, 
breaking the analogy with the thermodynamic temperature, the granular tem- 
perature cannot be self-sustaining. Instead, to maintain the granular temperature, 
energy must be continually pumped down into it,  from the energy of the mean flow, 
by the mechanism of shear work (i.e. the work done by stresses against the velocity 
gradient). Thus there is a three-tiered energy flow path within rapid granular flows : 
(i) work performed on the granular system by stresses applied a t  boundaries and/or 
by a body force such a gravity which collectively drive the bulk motion of the 
material ; (ii) shear work generates granular temperature wherever there are velocity 
gradients in the mean flow ; (iii) collisions between particles dissipate the granular 
temperature into thermodynamic heat. Steady motion of a granular material implies 
that the energy remains nearly constant so that whatever work is performed by 
external forces on the granular systems must eventually be dissipated away as heat 
by interparticle collisions. Understanding this energy path, is key to an under- 
standing of the mechanical behaviour of rapid granular flows. 

Bagnold (1954) performed the earliest detailed investigation into rapid granular 
flow. He studied wax spheres suspended in a glycerine-water-alcohol mixture, 
and sheared in a Couette shear cell. The results showed that even a t  moderate 
concentrations and shear rates, the composite ceases to behave like a Newtonian fluid 
with a corrected viscosity and adopts the behaviour : 

where rii is the stress tensor, pp is the density of the solid material, fii is a tensor- 
valued function of the solid fraction v ,  (v = pbulk/pp is the fraction of a unit volume 
that is occupied by solid), R is the particle radius, and duldy is the local velocity 
gradient. This rule has been confirmed for dry granular materials by Savage & Sayed 
(1984), Hanes (1983), Hanes & Inman (1985), and by the fluid free computer 
simulations of Campbell & Brennen (1985a), Campbell & Gong (1986), Walton & 
Braun (1986a, b) ,  Hopkins (1985) and Hopkins & Shen (1987). I n  fact, as long as the 
only timescale in the problem arises from the velocity gradient duldy, this behaviour 
may be anticipated from a simple dimensional analysis. As such, it is not surprising 
that all theoretical analyses, starting with the heuristic arguments of Bagnold (1954) 
and continuing through the progressively more sophisticated work of McTigue 
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(1978), Kanatani (1979u, b,  1980), Ackermann & Shen (1979), Ogawa & Oshima 
(1977), Oshima (1978, 1980), and Haff (1983), predict exactly the same behaviour for 
simple shear flows. The most comprehensive studies along these lines, described in 
Savage & Jeffrey (1981), Jenkins & Savage (1983), Lun et al. (1984), Lun & Savage 
(1987), Jenkins & Richmond (1985a, b, 1986) and Nakagawa (1987), are derived from 
Enskog’s dense-gas model (see Chapman & Cowling 1970). The essential differences 
between the predictions of all of the theories for simple shear flows lies in the nature 
of the tensor-valued catchall function f i i ( v ) .  

Equation ( 1 . 1 )  indicates that the apparent viscosity of a rapid granular flow varies 
linearly proportionally to the shear rate. This is particularly interesting as Campbell 
& Brennen ( 1 9 8 5 ~ )  showed, in their simple shear flow simulations, that thc granular 
temperature is almost uniformly distributed across the gap and varies as the square 
of the shear rate. In this light, (1.1) indicates that the apparent viscosity of a 
granular flow varies as the square root of the granular temperature, much as simple 
kinetic theory arguments dictate that the viscosity of a gas should vary as the square 
root of the thermodynamic temperature. This is particularly intriguing as a recent 
experimental study, Campbell & Wang (1986), indicates that the effective thermal 
conductivity of a granular material in air also varies directly proportional to the 
shear rate (and thus with the square root of the granular temperature), just as would 
be expected from the kinetic theory of gases. (This may not be the case for more 
complicated flows. Campbell & Brennen (1985b) show that this is not the case for flow 
down an inclined chute, where there are large gradients in the granular temperature, 
and give evidence of a ‘conduction’ of granular temperature much like the 
conduction of heat in a solid. Similar phenomena are predicted in many of the 
theoretical models mentioned above.) 

Recently the techniques of molecular dynamics computer simulations have been 
adapted to the study of macroscopic particle flows. Based on well-defined models of 
particle interactions - surface friction, collisions, elastic deformations, etc. - a 
mechanical system of granules is set up on a computer. Body forces are applied or 
the boundaries of the system are set in motion to induce flow within the particle 
assembly. ‘Experiments’ are then performed on the system by taking statistical 
averages of the system properties. As the instantaneous positions and velocities of 
the particles are known (which collectively describe the entire state of the system), 
literally everything about the system can be found in this manner, including many 
things that probably can never be found by direct experiment. This type of 
investigation is especially valuable in granular flows where the large particlr 
concentrations make laboratory measurements extremely difficult. The first work 
along these lines was due to Cundall (1974), but while the utility of his simulation was 
evident by the modelling of some rapid granular flows such as the emptying of a 
hopper, the only quantitative measurements were of extremely slow flows which 
involved only small deformations of a granular assembly. Campbell & Brennen 
(1985u, b )  were the first to apply this type of simulation to rapid granular systems, 
studying the flow down an inclined chute and in a Couette shear cell. This last was 
extended to make detailed stress tensor measurements by Campbell & Gong (1986) 
and studies of the effects of system boundaries by Campbell & Gong (1987) and 
Campbell (1987). Two-dimensional stress tensor measurements were independently 
performed by Walton & Braun ( 1 9 8 6 ~ )  using a slightly different simulation 
technique. The general type of simulation has also been used by Werner & Haff 
(1985, 1986) and Haff & Werner (1986). Recently Hopkins (1985) and Hopkins & 
Shen (1987) have adapted the Monte Carlo method to  granular flows, which shows 
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remarkably good comparison with the more exact models described above. A review 
of the various simulation methods can be found in Campbell (19863). 

Until the smooth particle studies of Walton & Braun (19863), all of the above 
simulation efforts were performed on two-dimensional flows of discs or cylinders. 
This eased the extensive computational demands and allowed some excellent movies 
to be produced, but somewhat complicated the interpretation of t h e  results. In  
particular, the geometrical differences between the two- and three-dimensional cases 
led to different interpretations of the space-filling effects of the solid fraction. 
Furthermore, there could be no measurement of out-of-shear-plane normal forces 
such as those reported in Savage (1979). The purpose of the current investigation is 
to extend the studies of Campbell & Gong (1986) to make a detailed study of the 
granular stress tensor in a simple shear flow of rough spheres. 

2. Computer simulation 
Other than its three-dimensional nature, this simulation is not markedly different 

from those used previously by Campbell (1982), Campbell & Brennen (1985a, b )  and 
Campbell & Gong (1986). Throughout the simulation, spherical particles (of mass m 
and radius R )  are confined within a control volume such as that shown schematically 
in figure 1. All of the sides of the control volume are bounded by ‘periodic’ 
boundaries ; as a particle passes through one periodic boundary it re-enters the other 
with exactly the same position and relative velocity with which it left. This type of 
boundary gets its name because it simulates a situation in which the control volume 
and its particles are periodically repeated, infinitely many times upstream and 
downstream of the central control volume. For these simulations, similar boundaries 
are also used to close the top and bottom. This set-up greatly enhances the 
computational efficiency of the simulation by limiting the number of particles to 
those initially placed in the control volume. It has the drawback that i t  is only 
applicable to flows with no gradients in the flow direction (i.e. steady, unidirectional 
flows). 

The major difference between this simulation and that used by Campbell & Brennen 
(1985a, b )  and Campbell & Gong (1986) is that  there are no solid boundaries 
enclosing the control volume. In  the previous simulations, the shear flow was driven 
by two solid walls, separated by a distance H in the y-direction, and set in relative 
motion in the x-direction with velocity U ,  to impose a shear rate UIH. (Here and in 
the following discussion, the x-direction will refer to the direction of mean motion. 
The boundaries of the system generate a mean field velocity gradient in the y- 
direction. The out-of-the-shear-plane coordinate will be referred to as the z- 
direction.) In these most recent simulations, shown schematically in figure 1, the 
solid walls are eliminated and the control volume is closed in the y-direction by 
periodic boundaries separated by a distance H .  To similarly impose a shear rate UIH,  
the periodic images that bound the top and bottom of the control volume are set in 
motion with velocities gU and -;U, respectively, in the x-direction. That is, when a 
particle exits the bottom of the central control volume, it re-enters the top with its 
x-direction velocity increased by U and a displaced x-coordinate that reflects the 
displacement of the origin of the moving periodic image. The opposite path is 
followed by particles that exit through the top of the control volume. This type of 
boundary is similar to that used by Walton & Braun (1986a, 3) but can be attributed 
originally to Lees & Edwards (1972). The major benefit is that non-uniformities, such 
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as those revealed in Campbell (1987) and Campbell & Gong (1987), are not imposed 
on the system by solid boundaries. 

Most of the current work was performed on control volumes of 240 particles which 
were originally arranged in a 6 x 10 x 4 (referring ot the x-, y- and z-directions) 
cubical array. The sole exception were the simulations performed at the largest solid 
fractions which were started from an initial 6 x 5 x 4 array. This was done to limit the 
freedom of motion of the particles by introducing some relatively short-range order 
into the system and thus to prevent ‘bridges’ (an effectively solid percolation of 
particles) which would transmit large stresses across the extent of the control 
volume. In actual Couette flow experiments such bridges form across the shear gap, 
producing large stress fluctuations such as those noted by Savage & Sayed (1984). 
But to break such a bridge, and allow the continuance of the flow, the walls of their 
apparatus had to be allowed to momentarily expand, as if vaulted on a pole of 
particles, causing a momentary decrease in the local density. Exactly the same 
behaviour could be seen in the wall-bounded simulations of Campbell & Brennen 
(1985a) and Campbell & Gong (1986) which were equipped with moveable walls in 
an almost exact reproduction of the Savage & Sayed (1984) apparatus. As the 
dimensions of the control volume used in the current studies are fixed, in order to 
maintain a uniform value of the instantaneous solid fraction, such bridges, if allowed 
to form, would never clear and thus had to be prevented. 

The particles interact by colliding with one another. Each collision is assumed to 
occur instantaneously once the particle surfaces come into contact (this is essentially 
the hard-sphere approximation often used in the kinetic theory of gases) and the 
collision result is computed from a standard centre-of-mass collision solution. 
Because the particles rotate as well as translate, two conditions are required to close 
the system of equations : one for the relative particle velocities normal to and one for 
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FIQURE 2. Diagram for the collision analysis. 

the velocities tangential to the particle surfaces a t  contact. The normal velocity 
condition assumes that the particles are ‘nearly elastic’ in the sense that energy is 
dissipated as a result of the collision but the particles retain their spherical shape. 
This is realized in the simulation through a coefficient of restitution F(F < l ) ,  which 
is the ratio of the approach to recoil velocities, and is specified as an input parameter 
to the program. For the tangential condition, the particle surfaces are assumed to be 
fully rough in the sense that surface friction will always be large enough to stop any 
relative motion of the particle surfaces tangential to  the point of contact. The 
impulse, J ,  exerted by the collision is then (referring to figure 2 )  

J = +( 1 + E )  ( 4 . k )  k + ~ mp ( q - ( q * k ) k + R ( w , + o , )  x k ) ,  (2.1) 
2(1 + A  

where m is the mass of the particle, q = zi, - u, is the relative velocity of the particles 
just before collision, w, and w, are the particle angular rotation rates, ~3 is the ratio 
of the square of the particle radius of gyration to the square of the particle radius, 
and k = (x, - xl)/ llx, - x1 11 is the unit vector pointing along the line connecting the 
particle centres a t  the instant of collisions. (Here, x, and x, are vectors pointing from 
the origin to the centres of particles 1 and 2 respectively.) 

After the initial configuration and velocities of the particles and boundaries are 
chosen, the simulation is allowed to proceed as it will, with no outside intervention, 
until it converges to a steady state. (For these simulations, a converged state was 
assumed to occur when the total system kinetic energy achieves nearly constant 
values. However, like all small thermodynamic systems, the kinetic energy will 
fluctuate slightly with time, making the determination of convergence somewhat 
difficult.) Starting from the initial state, convergence was achieved after as little as 
500 collisions per particle for most of these simulations. 
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3. Stress tensor measurements 
As in common fluids, what are perceived as continuum stresses are a byproduct of 

the microscale mechanisms of momentum transfer within the material. For granular 
materials and hard-sphere models of gases, momentum is transferred in two modes. 
The ‘streaming’ or ‘kinetic ’ mode describes the transport of momentum as a particle 
moves through the material carrying the momentum of its motion with it. The 
‘collisional’ mode, as the namc implies, describes the transport of momentum by 
interparticle collisions. Both mechanisms make important contributions to the stress 
tensor in a granular flow although, obviously, the streaming mode will dominate a t  
low densities where collisions are infrequent and particles move long distances 
between collisions, while the collisional mode will dominate a t  high densities where 
collisions are frequent and particles cannot move far before colliding. The complete 
stress tensor is found by summing the Contributions of both the streaming and 
collisional modes. 

The streaming portion of the stress tensor, T,*, is a byproduct of the random, 
almost thermal, motion of the granules. By arguments such as those presented in 
Chapman & Cowling (1970), the resulting contribution to the stress tensor is 

(3.1) I (u’2) (u’v’) (ulw’) 
(U’V’) ( V f 2 )  (V‘W’) , 
(U‘W’) (v’wl) (w‘2) 

where the primed quantities indicate the instantaneous deviation from the mean 
velocity. The symbol ( ) represents the average of the appropriate system properties, 
sampled a t  regular intervals, over a long period of system time ~ about 2500 
collisions per particle. (For more details about the averaging process, the reader is 
referred to Campbell 1982.) Each term of the stress tensor is determined by the 
formula 

in exactly the same way as the Reynolds stresses in a turbulent fluid are computed 
from hot-wire traces. The primed quantities represent the random mot,ion of the 
particles and it is therefore appropriate to define the granular temperature, T, as 

T = (u”)>+R~(w’~). (3.31 

As stated earlier, momentum is also transferred between particles when they 
collide. As the collisions are instantaneous, each results in an instantaneous 
momentum exchange equal to the collision impulse J. From a transport point of 
view, the effect of a collision is the transport of J-momentum a distance 2R in the 
direction k. The effective momentum transport by a single collision across a surfacc 
separating the particles is 2RJk-n, where n is the normal vector to the surface. That 
portion of the stress tensor, T:, that is due to interparticle collisions is thus given by : 

T,* = 2R[Jk], (3.4) 

where [Jk] is found by summing the dyadic product Jk for every collision and, a t  
the conclusion of sampling, dividing the result by the system volume and the length 
of the averaging period. (Physically the [ 1 average should be interpreted as the ( ) 
average multiplied by the collision rate.) 

As in Campbell & Gong (1986), the complete stress tensor is determined by 
summing the collisional and streaming contributions. The results are shown in 
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FIGURE 3. The complete dimensionless stress tensor as a function of the solid fraction v :  (a )  T ~ ~ ;  

( 6 )  T , ~ ;  (c) T ~ ~ ;  ( d )  T ~ ~ .  The lines are derived from Lun et al. (1984) and the solid symbols are from 
the smooth-particle simulations of Walton & Braun (19860). 
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figure 3. The measured values of the T,,, T,,, rYZ and rZY terms were several orders of 
magnitude smaller than the others indicating that, at  least for simple shear flows, 
they are for all intents and purposes zero (exactly as predicted by all the theoretical 
studies) and are thus excluded from the reported data. The measured values for the 
off-diagonal stress tensor components rXY and rXY were found to be equal to within 
three significant digits and, as a consequence, no plots will be presented for the rYX 
component. This leaves only four components, T,,, T , ~ ,  rYY and T,,, to be reported. As 
for all that are to follow, these results are scaled as 

(3.5) 

where T; are the original unscaled results obtained from the simulation and U / H  is 
the shear rate imposed by the moving periodic boundaries of the system. A simple 
dimensional analysis indicates that the resulting dimensionless stresses should be 
functions only of the particle coefficient of restitution 6 and some dimensionless 
measure of the particle packing, here represented as the solid fraction u. (For this flow 
geometry and boundary conditions, the scaled value, rdj,  is interchangeable with f i j  
in (l.l).) 

Also plotted are the theoretical predictions of Lun et al. (1984). The comparison 
between the two sets of data is somewhat difficult because the Lun et al. data were 
derived for assemblies of smooth spheres while the data points come from fully rough 
particle simulations. Such a comparison is not completely irrelevant since the 
momentum transferred in a collision through surface friction is an order of 
magnitude smaller than that transmitted by the impact normal to the surfaces a t  the 
point of contact. These are included here because it is the most advanced theory 
available and, as yet, there is no theory that can include reasonable amounts of 
surface friction for dense mixtures of particle. (The problem has recently been solved 
for disks in the dilute limit by Nakagawa 1987.) Furthermore, the theoretical results 
compared remarkably well with the two-dimensional simulation of Campbell & Gong 
(1986) as long as an adjustment was made for the geometrical differences in the 
interpretation of the solid fraction. In fact, the theory compares much better with 
the two-dimensional than the three-dimensional results. This is a bit surprising since 
the theory was developed for three-dimensional flows of spheres rather than discs and 
in that context it appears that the agreement with the two-dimensional results was 
probably accidental. Following the suggestion of one of the authors of the Lun et al. 
paper (S. B. Savage 1984, personal communication), the particle pair correlation 
used in the calculations has been replaced with 

which had been found as a better fit to the data from molecular Monte Carlo 
simulations. Here urn is the maximum shearable solid fraction which was taken to be 
urn = 0.60. No theoretical line is plotted for B = 1.0 as, with no particle surface 
friction, there would then be no energy dissipation mechanism within the Lun et al. 
system to damp the granular temperature ; but granular temperature would still be 
generated by shear work so that, in such a case, its magnitude would continually 
increase and never reach steady conditions. Also, Lun et at. used only a first-order 
correction to a Maxwellian velocity distribution function in their analysis, and as 
such their results should only be applicable to flows that are not far from equilibrium, 
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i.e. small velocity gradients and small energy dissipation. The curves plotted for 
tz = 0.8 may just barely fall inside their range of validity while the curves for B = 0.4 
and E = 0.6 probably do not. 

The other item that cannot be accounted for in the Lun et al. theory is the possible 
development of a shear-induced microstructure a t  large solid concentrations within 
the bulk material. Such a microstructure was observed in the two-dimensional 
simulations of Campbell & Brennen ( 1 9 8 5 ~ ) .  They showed that, in order to maintain 
a shear flow a t  large density, the two-dimensional particles align themselves into 
layers oriented in the direction of mean flow: this organization allows almost 
unrestricted motion between the layers and thus permits a shear flow a t  
concentrations that, without the layer formation, would probably exhibit sohd 
behaviour. The layers affect the collisional stresses indirectly by inducing strong 
anisotropies in the collision angle distribution (i.e. the probability that a collision will 
occur a t  a given unit vector k, connecting the particles centres). As the collisional 
stress tensor is formed by the average of the dyadic product [Jk],  favoured values of 
k can strongly affect both the absolute and relative magnitude of the stress tensor 
components. (This is doubly true as, from (2.1), the collision impulse Jitself depends 
on k . )  No observations of an equivalent microstructure development have been 
reported for assemblies of rigid spheres. However, molecular dynamics studies of 
Leonard-Jones molecules performed by Heyes (1986) indicate that shearing forces 
the molecules to align themselves into linear ‘strings ’ of molecules pointing roughly 
in the direction of flow (corresponding to the x-direction in the current simulations). 
The strings organize themselves in a triangular packing in what here would be the 
(y, 2)-plane. A shear motion can be maintained a t  high density within such a packing 
by relative motion between the strings in much the same way as a two-dimensional 
shear motion was maintained by relative motion between the layers. It seems 
reasonable to expect that a similar microstructure forms a t  high density in granular 
shear flows, especially as it appears to be the least restrictive organization that would 
kinematically permit a shear flow. One might guess, however, that owing to the 
additional degree of freedom, the three-dimensional microstructure is much less 
restrictive than its two-dimensional counterpart. At present, there is no theoretical 
model for the evolution of the microstructure and thus the microstructure effects 
could not be accounted for in the predictions of Lun et al. (1984). 

The plots for 7,y and 7yy (figures 3b and 3e) also include data from the smooth- 
particle simulations of Walton & Braun (1986b). Unfortunately, most of their 
simulations were performed for larger coefficients of restitution and the only data 
that could be directly compared were for e = 0.8 and a single point a t  E = 0.6. The 
error bars on the points reflect the spread in their data with shear rate. The spread 
exists because Walton & Braun (19863) use a ‘soft-particle’ model, in which the 
collision time is not instantaneous. (The rigid-particle model used here assumes that 
collisions occur instantaneously. A discussion of the various simulation methods can 
be found in Campbell 1986 b.) Now the only timescale in the rigid-sphcrc model is the 
inverse shear rate, which makes equation ( 1 . 1 )  a dimensional certainty. The soft- 
particle model introduces the collision time as a new timescale into the problem and 
opens up the possibility that the ratio of collision time to the inverse shear rate may 
have an effect on the functionf,(v) in (1.1).  It is interesting to note that the largest 
spread in the Walton & Braun data occurs a t  the largest density when the collision 
time becomes of the same order or longer than the time between collisions. 

Similar to the results obtained from the two-dimensional simulation of Campbell & 
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Gong (1986), all of the rii curves shown in figure 3, show a characteristic U-shape with 
asymptotes to infinity a t  v = 0 and at the shearable limit, v +  - 0.6. (The points 
shown a t  v = 0 were actually computed at  a solid fraction of v z 0.01.) Exactly the 
same behaviour is observed in the Walton & Braun data and is predicted by Lun 
et al. (1984). As might be expected, there is very good agreement between the smooth- 
particle theory and the smooth-particle simulation, yet both predict significantly 
larger stress levels than are found in the rough-particle simulations. (Some of the 
apparent agreement between the rough- and smooth-particle data and the theory is 
artificial because the E = 0.8 curve corresponds closest to the E = 1 .O data points and 
the E = 0.6 curve corresponds best with the E = 0.8 data etc. It would be wrong to 
assume that the difference is due to the different simulation methods as comparisons 
in Campbell (19863) show that both methods yield very similar results for rough 
particle simulations.) The large degree of disagreement between the rough- and 
smooth-particle data is somewhat surprising as wall friction appears to make only a 
small contribution to the stresses. (The two-dimensional simulations of Campbell & 
Gong 1986 show that the friction contributes about 10% of the total stress.) Thus 
there must be another mechanism that accounts for the large differences between the 
rough- and smooth-particle results. It may be reasonably speculated that the 
difference is largely due to the role that particle wall friction plays in dissipating 
away the granular temperature. Hence one would expect lower temperature levels 
with rough particles and with the lower temperatures, smaller collision rates 
(implying smaller collisional contributions to the stress tensor) and smaller streaming 
contributions to the stress tensor (as i t  is apparent from (3.1) that the streaming 
contribution is very closely related to the granular temperature). 

The nature of the two asymptotes in figure 3 can be better understood by 
comparing the individual contributions of the collisional and streaming modes which 
are shown in figures 4 and 5 respectively. Each clearly accounts for one leg of the U 
shape of the complete stress tensor and thus the low-density asymptote can be 
attributed to the streaming contribution, and the high-density asymptote to the 
collisional contribution. The physical underpinning of the high-density asymptote is 
easy to understand. It occurs as the solid fraction approaches the shearable limit 
(v+- 0.6) as beyond this limit, infinite stresses would be needed to initiate or 
maintain a shear flow. The explanation for the asymptote as v + 0 is more elusive and 
is best understood by digressing for a moment to consider the energy flow in a 
granular material. Because energy is always dissipated in a collision, the energy 
associated with the granular temperature must be continually supplied by the shear 
work performed on the system, or else i t  would quickly dissipate away to nothing. 
Thus, the magnitude of the granular temperature depends on a tradeoff between the 
rate of shear work and the dissipation. The physical cause of the low-density 
asymptote may be understood by remembering that the dissipation rate is 
proportional to the collision rate while the stresses transmitted in the streaming 
mode are independent of the collision rate. Hence as v + O ,  the collision rate and, with 
it, the dissipation rate, go to zero. But, a t  the same time, there is still shear work 
performed as a product of the streaming stresses and the velocity gradient. Thus 
temperature is being produced at  low density and, to  maintain a steady flow, it must 
be dissipated by the few collisions that do occur. This implies that more energy must 
be dissipated per collision, which, as all the dissipation mechanisms are proportional 
to the impact velocity, implies large relative particle velocities and consequently a 
large granular temperature. Thus in the limit as v i - 0 ,  the granular temperature 
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of the solid fraction u. 

approaches infinity. The appearance of a low-density asymptote in figures 3 and 4 
indicates that the (u,uj) correlations are going to infinity faster than v is going to 
zero. 

This process maybe better understood by considering the parameter 

(3.7) 

which is plotted in figure 6, along with the values predicted by Lun et al. (1984). 
Savage & Jeffrey (1981) first introduced this parameter (they denoted it R, but it is 
called S here to avoid confusion with the particle radius) and demonstrated its 
importance to transport processes in rapid granular systems. A physical in- 
terpretation of this parameter is that  1/S represents a kind of ‘efficiency’ by which 
the shear work (which is related to the velocity gradient U / H )  generates the granular 
temperature, T. In figure 6, S is very small at small v indicating that granular 
temperature is being generated very efficiently (presumably because the dissipation 
rate is going to zero along with the collision rate) while temperature is still being 
generated by the shear work performed against the streaming stresses. This is 
reflected in the stress asymptote as v --f 0. The parameter S increases dramatically for 
low values of the solid fraction but assumes a value very close to unity over much 
of the density range. Thus the dissipation of energy by inelastic collisions grows 
increasingly more important relative to the shear work as the density is increased 
and, consequently, the efficiency of the granular temperature generation is reduced ; 
this continues until the two reach some sort of balance. (Note, i t  will be evident from 
figure 7 that S goes to unity a t  approximately the same point that the collisional 
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FIGURE 7.  The ratio, TJT~ of streaming t o  collisional contributions to  the stress tensor as a function 
of the solid fraction Y .  The lines are derived from Lun et al. (1984). 

stresses begin to dominate, i.e. just as the stresses begin to rise along the right leg of 
the U-shaped complete stress pattern shown in figure 3.) 

Notice, in figure 3, that the points of minimum scaled stress are shifted far to the 
left of the minimum points predicted by Lun et al. (1984). A t  low densities, streaming 
stresses are dominant and the shifting of the minimum to the left in that region 
reflects a reduction in their importance. Furthermore, the shift becomes larger as the 
coefficient of restitution is reduced. This should be anticipated as the streaming 
stresses are closely related to the granular temperature and a smaller 6 implies more 
energy dissipation and consequently a smaller granular temperature. When the 
streaming stresses are considered separately, as in figure 4, the reduction can be seen 
throughout the range of solid fractions. But this only becomes apparent for the 
complete stresses shown in figure 3 at  low densities where the streaming stresses 
dominate. Notice that the minimum point for the E = 0.8 rough-particle simulation 
is shifted just slightly to the left of its smooth-particle counterpart, a fact that can 
similarly be attributed to the additional energy dissipated by the particle surface 
friction. 

The relative importance of the collisional and streaming contributions, T,/T,, is 
shown in figure 7 along with the predictions of Lun el al. (1984). Note that the range 
of v where the streaming stresses are important corresponds, as was anticipated, to 
the region where S is small. The Lun et al. study predicts that there should be 
minor variations in T,/T, with both density and stress tensor component. This 
variation is reflected somewhat in the simulation data but the scatter of the data is 
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much larger than any variation predicted by the theory. However, these results do 
show that the streaming and collisional contributions to the stress tensor have about 
the same magnitude a t  around u = 0.15, and that the streaming contribution 
becomes negligible ( T ~  x 0 . 1 ~ ~ )  a t  about u % 0.4. The streaming stress tensor thus 
seems to be significantly less important in these three-dimensional simulations than 
for the two-dimensional flows examined by Campbell & Gong (1984). As it stands, it 
seems possible to ignore the streaming contributions to the stress tensor (as was 
popular in most of the early theoretical work) for much of the densities common in 
granular flows, as long as one keeps in mind that i t  may still be very important in 
some regions such as the low-density region observed near the chute bottoms by 
Campbell & Rrennen (1985 6 ) .  

By considering the nature of the collision impulse in equation (Z.l), it should be 
surprising that the stress tensor ends up being symmetric. This is because the 
component of the impulse which is conveyed through friction between the particle 
surfaces, J’, 

J’ = * ( q - ( q * k ) k + R ( w , + o , ) x  k ) ,  13.8) 
2(1 +P)  

is perpendicular to k and thus makes asymmetrical contributions to the collisional 
stress tensor when formed, as in (3.4), into dyadic products with the unit vector k .  
However, J‘ is composed of two parts, that  due to the relative motion of the particle 
centres tangential to  the point of contact between the particles, ( q - ( q . k )  k ) ,  (which 
in an averaged sense is related to the velocity gradient U / H )  and that due to the 
particle rotation (R(o, + 02) x k )  (which will be related to the mean rotation rate, 
(o), of the particles). Now, asymmetric stress are possible in a granular flow and 
may be interpreted as torques on the particles. The macroscopic manifestation of the 
torques will be either angular acceleration of the particles or spatial gradients in the 
mean rotation rates; however, as in steady flow there can be no time change in the 
mean rotation rate of the particles and, as the control volume configuration was 
chosen to prohibit any spatial gradients, the stress tensor must be symmetric. 
Campbell & Gong (1986) have shown in their two-dimensional simulation that, 
considered separately, the two contributions to S do indeed make asymmetrical 
contributions to the stress tensor but, when considered together, the asymmetries 
cancel out. The granular flow accomplishes this naturally by fixing the mean rotation 
rate (o) relative to the velocity gradient U / H .  They showed that over most of the 
density range, (o) H / U  x -$, but it decreases sharply as the shearable limit is 
approached. (Campbell 1986a has shown that the drop observed in the two- 
dimensional simulations is due to the microstructure development within the 
material.) The ratio -(a) H / U  is plotted in figure 8 as a function of the solid 
fraction v. Over the entire range, (o) has a value of about -$H/U and is oriented 
perpendicular to the shear plane. This is more or less the same behaviour experienced 
by a particle in a fluid shear flow. The lack of the precipitous drop observed by 
Campbell & Gong (1986) at the larger solid fractions is one indication that the 
microstructure development is not as restrictive in three-dimensional flows of 
spheres as it is in two-dimensional disc flows. 

As a side note, Campbell & Gong (1987) and Campbell (1987) have shown that 
asymmetric stresses may be found near boundaries as the boundary can itself impose 
a rotational state in the particles that collide with i t  that  would be different from 
what the particle would naturally assume in a uniform shear flow. In  that case, the 
torques induced in particles by the asymmetric stresses are balanced in steady flow 
by gradients in the corresponding couple stress tensor. 
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FIGURE 8. The scaled average rotation rate, -(o) HIU,  as a function of the solid fraction v. 

4. Friction coefficient and normal stress differences 
Many important phenomenological features of a flow depend not so much on the 

stresses themselves but on the ratios between various components of the stress 
tensor. For example, the friction coefficient 7,y/7yy represents the resistance applied 
by the shearing material relative to an applied normal stress and the differences 
between the normal stresses, reflected in the ratios 7,,/-ryy and ryy/7,,, will determine 
the degree to which the flow is subject to non-Newtonian normal stress difference 
effects. 

lotted as a function of the solid 
fraction v. The dominant feature is that the friction coefficient generally decreases 
with solid fraction. The smaller the coefficient of restitution the larger the absolute 
magnitude of the friction coefficient and the more severe the dropoff. I n  fact, rxy/rYy 
decreases monotonically only for v = 0.4, while for the larger coefficients of 
restitution, there are increasingly longer regions of solid fraction where the friction 
coefficient is effectively constant. (For v = 1.0, 7xy/7yy is essentially constant for 
v > 0.15.) This drop in 7,y/7yy was also observed in the shear-cell experiments of 
Savage & Sayed (1984). It is interesting to  note that exactly the opposite effect is 
found in tests to determine the yield strength of soils; in these, an initially static 
sample is subjected to a shear force until it just begins to flow and the friction 
coefficient is determined as the ratio of shear to normal forces a t  the point of yield. 
Thus, the behaviour observed in these simulation results must reflect aspects of fully 
developed granular flows that are not present a t  the initiation of flow. As before the 
predictions of Lun et al. (1984) are also plotted. Campbell & Gong (1986) found a 
slightly better comparison between their data and a hybrid theory formed from a 
combination of the smooth-particle streaming stress tensor of Lun et al. (1984) and 
the collisional stress tensor from the rough-particle analysis of Lun & Savage (1987) 

Figure 9 shows the friction coefficient rXy/r  
?? P 
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(which neglected any streaming stresses and thus, by itself, compares poorly with the 
simulation data);  this is plotted in figure 9(c) and, once again, the altered theory 
agrees better with the simulation results. In either case, the theories predict that 
T , ~ / T ~ ~  will decrease for small values of v but will then increase towards the shearable 
limit. 

To improve the physical understanding, the results are divided up to show the 
individual contributions of the collisional and streaming stress tensors. The streaming 
contribution to ~ , ~ / 7 ~ ~  is a decreasing function of v and contributes most to the 
dramatic decline in the friction coefficient. Exactly the same trend in the streaming 
stresses is predicted by Lun et al. (1984). At the same time, the collisional 
contribution to the friction coefficient actually increases for small values of the solid 
fraction and only decreases as the shearable limit is approached. This latter decrease 
is not anticipated in the Lun et al. (1984) calculations, which predict that the friction 
coefficient should rise as the shearable limit is approached. Campbell ( 1 9 8 6 ~ )  has 
shown that for two-dimensional flows the decrease in the collisional contribution to 
7xy/7yy, near the shearable limit, can be explained by the formation of the internal 
microstructure observed by Campbell & Brennen (1985~) .  Remember that the 
microstructure induces preferred choices of the collision vector k which will strongly 
affect the absolute and relative magnitudes of the components of the collisional stress 
tensor T~ = [Jk] .  In two-dimensions the layer formation restricts a particle to collide 
with particles in its own layers and those in its two nearest neighbouring layers. Now, 
the particles from neighbouring layers restrict a particle’s motion to a narrow band 
about the centreplane of the layer. Thus the collisions between particles within the 
same layer are restricted to a narrow range of angles about the midplane of the laycr 
and the collisions with particles from neighbouring layers are restricted to a similarly 
narrow range of angles but are roughly perpendicular to  those that occur between 
particles within the same layer. The similarity between the current results and their 
two-dimensional counterparts indicates that the behaviour of the collisional friction 
coefficient can be accounted for by an equivalent three-dimensional microstructure 
development such as the organization of particles into ‘strings’ as observed by Heyes 
(1986). Such a microstructure would affect on the three-dimensional collision angles 
in much the same way as the layered microstructure does in two dimensions. That 
is, collisions between particles within the same string occur about the poles of a 
particle while collisions between a particle and those in neighbouring strings would 
be more or less evenly distributed about the equator. This could explain the 
reduction in the collisional friction coefficient as the density is increased (and thus 
the microstructure becomes increasingly more confining). However, no clear 
connection can be made between the microstructure and the reduction in the 
streaming friction Coefficient. As mentioned previously, the microstructure develop- 
ment could not be accounted for the Lun et al. theory, which explains why their 
predictions do not fall near the shearable limit. 

Figures 10 and 11 show the variation of the normal stress ratios r,,/ryy and T ~ ~ / T , ,  

as functions of the solid fraction v. No theoretical lines are plotted because Lun et al. 
(1984) predict that there should be no normal stress differences. However, an earlier, 
though less complete, paper in that series, Savage & Jeffrey (1981), does predict that 
a t  large values of the parameter S, T,, is smaller than r,, and rYy (the latter two of 
which they predict to be equal). The data show that none of the normal stresses are 
equal and that for all values of u ,  T,, is by far the largest, taking up to six times the 
value of the smallest, rZz. 

Figure 10 shows a plot of the ratio T , , / T ~ ~  as a function of the solid fraction v. 
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of the temperature components in the x- and y-directions. Figure 10 ( b )  then indicates 
that, especially a t  low densities, the temperature in the x-direction is always greater 
than that in the y-direction. This, in turn, may be understood by examining the two 
mechanisms of temperature generation. By the first, or mode (i), temperature is 
generated as a byproduct of interparticle collisions ; that  is, even if the two colliding 
particles initially move with exactly the mean velocity appropriate to their position, 
the velocities of the particles after collision will have components that appear to be 
randomly distributed about the mean velocity. Macroscopically, this appears as 
granular temperature. The second, or mode (ii) temperature generation mechanism 
comes about from the granular-temperature-induced convection of a particle along 
the velocity gradients; i.e. that as a particle moves by virtue of its random motion 
along the gradients of mean velocity it will acquire an apparent random velocity, 
roughly equal to the difference in mean velocity between the particle’s last collision 
and its present location. This latter mode of temperature generation will, of course, 
be largest for disperse flows where the particles move long distances between 
collision. Note that only x-direction temperature will be generated in mode (ii), as the 
simulation only has gradients of x-direction velocity. Thus, the mode (ii) temperature 
generation can explain why the temperature components in the x-direction are larger 
than those in the other directions and why the effect is largest a t  the smallest 
concentrations. Furthermore, the smaller the coefficient of restitution E ,  the more 
energy that is dissipated in a collision and hence the smaller the magnitude of the 
random velocity produced in a collision by mode (i). Thus, the smaller the value of 
E ,  the larger the relative importance of mode (ii) compared to  mode (i) temperature 
generation and the larger the x-direction temperature, which is generated by both 
modes (i) and (ii), will be relative to the y- or z-direction temperatures (which can 
only be generated by mode (i)). Clearly, some process of this type is a t  work in figure 
10. The temperature anisotropy would also cause collisions between particles to have 
a significantly larger x-direction, rather than y- or z-direction, impulse which can 
account for the minor variations in the collisional contribution to 7,,/7yy. Finally, 
the streaming contribution to the friction coefficient, shown in figure 9(b) may also 
be related to the temperature anisotropy as the drop in rxy /ryy  with increasing solid 
fraction mirrors that in rxx/rYy ; this would make sense as the temperature anisotropy 
implies a generally greater transport of x-direction relative to y-direction momentum. 
Note that figure 10 does not show the sudden rise as the shearable limit is approached 
that was apparent in the two-dimensional simulation of Campbell & Gong (1986) and 
explained by Campbell (1986~)  as a byproduct of the layered microstructure 
development. This is another indication that whatever form the microstructure takes 
in three-dimensions is much less restrictive than its two-dimensional counterpart. 

Figure 11 shows the other normal stress ratio ryy/r,,  plotted again as a function 
of the solid fraction v. The ratio starts a t  a value close to unity and rises; all the 
curves appear to  flatten out towards the centre of the solid fraction range only, for 
all data except e = 0.4, to drop off again as the shearable limit is approached. This 
behaviour is reflected in both the streaming and collisional parts. The latter indicates 
that  the y-direction temperature generation is favoured over the x-direction for much 
of the solid fraction range. However, no clear explanation of this observation is 
readily available to the author. (No plot is provided for rx,/r,, although, from 
comparison of figures 10 and 11, i t  can be seen that such a plot would show 
monotonically decreasing lines, slightly more precipitous than those in figure 10.) 
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5.  Conclusions 
This paper has presented the results of a detailed study of the stress tensor that 

is generated in an imposed simple shear flow of inelastic rough spheres. The study 
was performed using a computer simulation which allows access to all the details of 
the flow. The stress tensor was found to be symmetric under all the conditions 
studied. Also, only four of the nine components, rxx, rxy, ryy and rzz,  were reported 
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as the other components were found to  be of insignificant magnitude. The complete 
stress tensor is a result of two microscopic mechanisms of momentum transport : (i) 
momentum transport by interparticle collision and (ii)  the streaming mode whereby 
momentum is transported by the particles as they move along their random paths 
through the system, carrying their momentum with them. Naturally, the collisional 
mode dominates a t  dense particle packings where collisions are frequent and the 
streaming mode dominates for disperse packings where the particles move long 
distances between collisions. 

The curves for all the components of the complete stress tensor have a 
characteristic U shape when plotted against solid fraction, each leg of the U 
representing an asymptote towards infinity, both as u + 0 and as u approached the 
maximum shearable concentration ; the small-u asymptote can be attributed to the 
streaming modes and the large-u asymptote can be attributed collisional modes of 
momentum transport. The relative importance across the density range of the two 
modes was also examined and the results show the streaming stresses to be much less 
important for three-dimensional flows than for their two-dimensional counterparts. 
Even though the nature of the collision impulse admitted the possibility of 
asymmetric contributions within the collisional portion of the stress tensor, the 
measured stress tensors were nevertheless symmetric ; as in the two-dimensional case, 
this is accomplished naturally in a granular shear flow by fixing the average rotation 
rate for the particles to a value of about half of the mean shear rate. Unlike the two- 
dimensional case, no precipitous drop was observed in the ratio - ( o ) H / U  a t  high 
densities, which is an indication that the high-density microstructure that develops 
in a three-dimensional shear flow is significantly less restrictive than in the t,wo- 
dimensional case. As was observed in numerous experiments and in the two- 
dimensional simulations, the friction coefficient rXy/ryy was found to be a decreasing 
function of the solid fraction u.  This observation was shown to arise in both the 
collisional and streaming contribution to the stress tensor. A similar observation can 
be made in the normal stress ratio r,,/ryy which was observed to be significantly 
different from unity over much of the parameter range. However, the thrce- 
dimensional results do not exhibit the sharp rise near the shearable limit that was 
apparent in the two-dimensional simulations. (This is an additional indication that 
the microstructural development in the three-dimensional simulations is much less 
restrictive than in two-dimensions.) This observation can be understood as a change 
in the relative importance of the two types of granular temperature generat'ion. 
Conversely, the other normal stress ratio ryy/r , ,  was found to be a generally 
increasing function of the solid fraction, an observation for which there appear to be 
no immediate physical explanation. 
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